Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 625(7996): 722-727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110573

RESUMO

Ecosystems generate a wide range of benefits for humans, including some market goods as well as other benefits that are not directly reflected in market activity1. Climate change will alter the distribution of ecosystems around the world and change the flow of these benefits2,3. However, the specific implications of ecosystem changes for human welfare remain unclear, as they depend on the nature of these changes, the value of the affected benefits and the extent to which communities rely on natural systems for their well-being4. Here we estimate country-level changes in economic production and the value of non-market ecosystem benefits resulting from climate-change-induced shifts in terrestrial vegetation cover, as projected by dynamic global vegetation models (DGVMs) driven by general circulation climate models. Our results show that the annual population-weighted mean global flow of non-market ecosystem benefits valued in the wealth accounts of the World Bank will be reduced by 9.2% in 2100 under the Shared Socioeconomic Pathway SSP2-6.0 with respect to the baseline no climate change scenario and that the global population-weighted average change in gross domestic product (GDP) by 2100 is -1.3% of the baseline GDP. Because lower-income countries are more reliant on natural capital, these GDP effects are regressive. Approximately 90% of these damages are borne by the poorest 50% of countries and regions, whereas the wealthiest 10% experience only 2% of these losses.


Assuntos
Mudança Climática , Países Desenvolvidos , Países em Desenvolvimento , Ecossistema , Produto Interno Bruto , Mudança Climática/economia , Mudança Climática/estatística & dados numéricos , Modelos Climáticos , Países Desenvolvidos/economia , Países em Desenvolvimento/economia , Plantas , Densidade Demográfica , Fatores Socioeconômicos
3.
Nature ; 622(7982): 308-314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794184

RESUMO

Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.


Assuntos
Anfíbios , Mudança Climática , Ecossistema , Espécies em Perigo de Extinção , Animais , Anfíbios/classificação , Biodiversidade , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Espécies em Perigo de Extinção/estatística & dados numéricos , Espécies em Perigo de Extinção/tendências , Extinção Biológica , Risco , Urodelos/classificação
6.
Nature ; 610(7933): 643-651, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36289386

RESUMO

The risks of climate change are enormous, threatening the lives and livelihoods of millions to billions of people. The economic consequences of many of the complex risks associated with climate change cannot, however, currently be quantified. Here we argue that these unquantified, poorly understood and often deeply uncertain risks can and should be included in economic evaluations and decision-making processes. We present an overview of these unquantified risks and an ontology of them founded on the reasons behind their lack of robust evaluation. These consist of risks missing owing to delays in sharing knowledge and expertise across disciplines, spatial and temporal variations of climate impacts, feedbacks and interactions between risks, deep uncertainty in our knowledge, and currently unidentified risks. We highlight collaboration needs within and between the natural and social science communities to address these gaps. We also provide an approach for integrating assessments or speculations of these risks in a way that accounts for interdependencies, avoids double counting and makes assumptions clear. Multiple paths exist for engaging with these missing risks, with both model-based quantification and non-model-based qualitative assessments playing crucial roles. A wide range of climate impacts are understudied or challenging to quantify, and are missing from current evaluations of the climate risks to lives and livelihoods. Strong interdisciplinary collaboration and deeper engagement with uncertainty is needed to properly inform policymakers and the public about climate risks.


Assuntos
Mudança Climática , Modelos Climáticos , Modelos Econômicos , Medição de Risco , Humanos , Mudança Climática/economia , Mudança Climática/estatística & dados numéricos , Incerteza , Ciências Sociais , Disciplinas das Ciências Naturais , Formulação de Políticas
7.
Nature ; 608(7921): 80-86, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922501

RESUMO

Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.


Assuntos
Secas , Clima Extremo , Inundações , Gestão de Riscos , Mudança Climática/estatística & dados numéricos , Conjuntos de Dados como Assunto , Secas/prevenção & controle , Secas/estatística & dados numéricos , Inundações/prevenção & controle , Inundações/estatística & dados numéricos , Humanos , Hidrologia , Internacionalidade , Gestão de Riscos/métodos , Gestão de Riscos/estatística & dados numéricos , Gestão de Riscos/tendências
13.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725255

RESUMO

Societal benefits from climate change mitigation accrue via multiple pathways. We examine the US impacts of emission changes on several factors that are affected by both climate and air quality responses. Nationwide benefits through midcentury stem primarily from air quality improvements, which are realized rapidly, and include human health, labor productivity, and crop yield benefits. Benefits from reduced heat exposure become large around 2060, thereafter often dominating over those from improved air quality. Monetized benefits are in the tens of trillions of dollars for avoided deaths and tens of billions for labor productivity and crop yield increases and reduced hospital expenditures. Total monetized benefits this century are dominated by health and are much larger than in previous analyses due to improved understanding of the human health impacts of exposure to both heat and air pollution. Benefit-cost ratios are therefore much larger than in prior studies, especially those that neglected clean air benefits. Specifically, benefits from clean air exceed costs in the first decade, whereas benefits from climate alone exceed costs in the latter half of the century. Furthermore, monetized US benefits largely stem from US emissions reductions. Increased emphasis on the localized, near-term air quality-related impacts would better align policies with societal benefits and, by reducing the mismatch between perception of climate as a risk distant in space and time and the need for rapid action to mitigate long-term climate change, might help increase acceptance of mitigation policies.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Poluentes Atmosféricos/efeitos adversos , Análise Custo-Benefício , Política Ambiental , Humanos , Material Particulado/efeitos adversos , Estados Unidos
15.
Nature ; 598(7880): 308-314, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646000

RESUMO

Estimates of global economic damage caused by carbon dioxide (CO2) emissions can inform climate policy1-3. The social cost of carbon (SCC) quantifies these damages by characterizing how additional CO2 emissions today impact future economic outcomes through altering the climate4-6. Previous estimates have suggested that large, warming-driven increases in energy expenditures could dominate the SCC7,8, but they rely on models9-11 that are spatially coarse and not tightly linked to data2,3,6,7,12,13. Here we show that the release of one ton of CO2 today is projected to reduce total future energy expenditures, with most estimates valued between -US$3 and -US$1, depending on discount rates. Our results are based on an architecture that integrates global data, econometrics and climate science to estimate local damages worldwide. Notably, we project that emerging economies in the tropics will dramatically increase electricity consumption owing to warming, which requires critical infrastructure planning. However, heating reductions in colder countries offset this increase globally. We estimate that 2099 annual global electricity consumption increases by about 4.5 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in global mean surface temperature (GMST), whereas direct consumption of other fuels declines by about 11.3 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in GMST. Our finding of net savings contradicts previous research7,8, because global data indicate that many populations will remain too poor for most of the twenty-first century to substantially increase energy consumption in response to warming. Importantly, damage estimates would differ if poorer populations were given greater weight14.


Assuntos
Dióxido de Carbono/economia , Mudança Climática/economia , Mudança Climática/estatística & dados numéricos , Fontes Geradoras de Energia/economia , Fontes Geradoras de Energia/estatística & dados numéricos , Fatores Socioeconômicos , Temperatura , Ar Condicionado/economia , Ar Condicionado/estatística & dados numéricos , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Eletricidade , Calefação/economia , Calefação/estatística & dados numéricos , História do Século XXI , Atividades Humanas , Pobreza/economia , Pobreza/estatística & dados numéricos , Ciências Sociais
19.
PLoS One ; 16(5): e0251825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014968

RESUMO

Mahatma Gandhi Rural Employment Guarantee Scheme a large social security programme being implemented in India, with an average annual investment of US$ 7 billion. The bulk of the activities under this programme are focused on natural resources such as land, water and trees, which provide adaptation benefits. In this study an attempt is made to estimate the carbon sequestration achieved and future potential, as a co-benefit, from MGNREGS. The total mean carbon sequestered at the national level, considering the cumulative number of natural resource based activities, for the year 2017-18 was estimated to be 102 MtCO2. The annual mean carbon sequestration is projected to increase to about 132 MtCO2 by 2020 and 249 MtCO2 by 2030. Drought proofing is one of the activities implemented under MGNREGS and it includes tree planting, relevant to achieving the NDC carbon sink target. The cumulative carbon sink created by drought proofing activities is projected to be 56 MtCO2 in 2020, 281 MtCO2 in 2025 and 561 MtCO2 in 2030. This study demonstrates the significant carbon sink potential of MGNREGS and highlights the importance of estimation and reporting climate mitigation co-benefits of adaptation actions such as MGNREGS under the Paris Agreement.


Assuntos
Sequestro de Carbono , Conservação dos Recursos Naturais , Órgãos Governamentais , Previdência Social , Mudança Climática/estatística & dados numéricos , Humanos , Índia , Solo
20.
PLoS One ; 16(4): e0250979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930081

RESUMO

While only 20% of harvested lands are actually irrigated, 40% of global agricultural production originates from irrigated areas. Therefore, assessing irrigation requirements is essential for the development of effective water-related policies for an efficient management of water resources. Moreover, global-scale analyses are becoming increasingly relevant, motivated by globalized production and international trade of food as well as by the need of common strategies to address climate change. In this study, a comprehensive model to estimate crop growth and irrigation requirements of 26 main crops at global scale is presented. The model computes a soil water balance using daily precipitation and reference evapotranspiration based on a high-resolution ERA5 reanalysis dataset from the European Copernicus Program. The irrigation requirement, defined as the minimum water volume to avoid water stress, is computed for year 2000 at the resolution of 5 arc-min (or 0.0833°) and aggregated at different spatial and temporal scales for relevant analyses. The estimated global irrigation requirements for 962 km3 is described in detail, also in relation to the spatial variability and to the monthly variation of the requirements. A focus on different areas of the world (California, Northern Italy and India) highlights the wealth of information provided by the model in different climatic conditions. National data of irrigation withdrawals have been used for an extensive comparison with model results. A crop-specific validation has also been made for the State of California, comparing model results with local data of irrigation volume and independent estimates of crop water use. In both cases, we found a good agreement between model results and real data.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Mudança Climática/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Simulação por Computador , Bases de Dados Factuais , Internacionalidade , Modelos Teóricos , Solo , Recursos Hídricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA